working temp sensor

This commit is contained in:
user 2024-10-11 18:01:48 +02:00
parent e4f0dab61c
commit 97dfb13b74
10 changed files with 503 additions and 1116 deletions

316
embadet/components/onewire/onewire.h Normal file → Executable file
View file

@ -1,243 +1,121 @@
#ifndef __ONEWIRE_H__
#define __ONEWIRE_H__
#ifndef ONEWIRE_H
#define ONEWIRE_H
#include <espressif/esp_misc.h> // sdk_os_delay_us
#include "FreeRTOS.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "driver/gpio.h"
#include "esp_types.h"
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
#define _ONEWIRE_WRITE1_LOW 6
#define _ONEWIRE_WRITE1_WAIT 64
#define _ONEWIRE_WRITE0_LOW 60
#define _ONEWIRE_WRITE0_WAIT 10
#define _ONEWIRE_READ_WAIT 9
#define _ONEWIRE_READ_RECOVERY 55
#define _ONEWIRE_RESET_WAIT 480
#define _ONEWIRE_PRESENCE_WAIT 70
#define _ONEWIRE_RESET_RECOVERY 410
/** @file onewire.h
*
* Routines to access devices using the Dallas Semiconductor 1-Wire(tm)
* protocol.
*/
#define _BLOCK_TIME pdMS_TO_TICKS(1000)
#define _SEMFAIL_MSG "Failed to obtain semaphore. (%s)"
/** Select the table-lookup method of computing the 8-bit CRC
* by setting this to 1 during compilation. The lookup table enlarges code
* size by about 250 bytes. By default, a slower but very compact algorithm
* is used.
*/
#ifndef ONEWIRE_CRC8_TABLE
#define ONEWIRE_CRC8_TABLE 0
#endif
static const char *TAG_ONEWIRE = "ONEWIRE";
/** Type used to hold all 1-Wire device ROM addresses (64-bit) */
typedef uint64_t onewire_addr_t;
typedef enum {
_ROM_READ = 0x33,
_ROM_SEARCH = 0xF0,
_ROM_MATCH = 0x55,
_ROM_SKIP = 0xCC
} onewire_rom_commands_t;
/** Structure to contain the current state for onewire_search_next(), etc */
typedef struct {
uint8_t rom_no[8];
uint8_t last_discrepancy;
bool last_device_found;
} onewire_search_t;
gpio_num_t pin;
SemaphoreHandle_t mutex;
} onewire_bus_handle_t;
/** ::ONEWIRE_NONE is an invalid ROM address that will never occur in a device
* (CRC mismatch), and so can be useful as an indicator for "no-such-device",
* etc.
/**
* @brief Configure gpio pins for onewire communication
*
* Set `custom_config` to NULL for default config.
*
* @param pin Bus pin
* @param custom_config Custom gpio config
*
* @retval 1: Success
* @retval 0: Incorrect pin or gpio configuration failed (Logs tells which happened)
*/
#define ONEWIRE_NONE ((onewire_addr_t)(0xffffffffffffffffLL))
uint8_t onewire_configure_gpio(gpio_num_t pin, gpio_config_t *custom_config);
/** Perform a 1-Wire reset cycle.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @returns `true` if at least one device responds with a presence pulse,
* `false` if no devices were detected (or the bus is shorted, etc)
/**
* @brief Initalize onewire bus
*
* Set `custom_config` to NULL for default config.
* @warning MUST be called before any other library function!
*
* @param bus Bus handle
* @param pin Bus pin
* @param custom_config Custom gpio config
*
* @retval 1: Success
* @retval 0: `bus` is NULL or gpio configuration failed (Logs tells which happened)
*/
bool onewire_reset(int pin);
uint8_t onewire_init(onewire_bus_handle_t *bus, gpio_num_t bus_pin, gpio_config_t *custom_config);
/** Issue a 1-Wire rom select command to select a particular device.
*
* It is necessary to call onewire_reset() before calling this function.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param addr The ROM address of the device to select
*
* @returns `true` if the "ROM select" command could be succesfully issued,
* `false` if there was an error.
/**
* @brief Send reset pulse
*
* @param bus Bus handle
*
* @retval 1: Success (device sent presence pulse)
* @retval -1: Failed to obtain semaphore for gpio handling
* @retval 0: Device failed to return presence pulse
*/
bool onewire_select(int pin, const onewire_addr_t addr);
uint8_t onewire_reset(onewire_bus_handle_t *bus);
/** Issue a 1-Wire "skip ROM" command to select *all* devices on the bus.
*
* It is necessary to call onewire_reset() before calling this function.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @returns `true` if the "skip ROM" command could be succesfully issued,
* `false` if there was an error.
/**
* @brief Write bit
*
* @param bus Bus handle
* @param bit Bit to send
*/
bool onewire_skip_rom(int pin);
void onewire_write_bit(onewire_bus_handle_t *bus, uint8_t bit);
/** Write a byte on the onewire bus.
*
* The writing code uses open-drain mode and expects the pullup resistor to
* pull the line high when not driven low. If you need strong power after the
* write (e.g. DS18B20 in parasite power mode) then call onewire_power() after
* this is complete to actively drive the line high.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param v The byte value to write
*
* @returns `true` if successful, `false` on error.
/**
* @brief Write byte
*
* @param bus Bus handle
* @param bit Byte to send
*/
bool onewire_write(int pin, uint8_t v);
void onewire_write_byte(onewire_bus_handle_t *bus, uint8_t byte);
/** Write multiple bytes on the 1-Wire bus.
*
* See onewire_write() for more info.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param buf A pointer to the buffer of bytes to be written
* @param count Number of bytes to write
*
* @returns `true` if all bytes written successfully, `false` on error.
/**
* @brief Read bit
*
* @param bus Bus handle
*
* @retval 1: Device returned 1
* @retval 0: Device returned 0
* @retval -1: Failed to obtain semaphore for gpio handling
*/
bool onewire_write_bytes(int pin, const uint8_t *buf, size_t count);
uint8_t onewire_read_bit(onewire_bus_handle_t *bus);
/** Read a byte from a 1-Wire device.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @returns the read byte on success, negative value on error.
/**
* @brief Read bit
*
* @param bus Bus handle
*
* @return Byte returned by device
*/
int onewire_read(int pin);
uint8_t onewire_read_byte(onewire_bus_handle_t *bus);
/** Read multiple bytes from a 1-Wire device.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
* @param buf A pointer to the buffer to contain the read bytes
* @param count Number of bytes to read
*
* @returns `true` on success, `false` on error.
/**
* @brief Send command to device
*
* @param bus Bus handle
* @param command Onewire rom command
*
*/
bool onewire_read_bytes(int pin, uint8_t *buf, size_t count);
void onewire_send_command(onewire_bus_handle_t *bus, onewire_rom_commands_t command);
/** Actively drive the bus high to provide extra power for certain operations
* of parasitically-powered devices.
*
* For parasitically-powered devices which need more power than can be
* provided via the normal pull-up resistor, it may be necessary for some
* operations to drive the bus actively high. This function can be used to
* perform that operation.
*
* The bus can be depowered once it is no longer needed by calling
* onewire_depower(), or it will be depowered automatically the next time
* onewire_reset() is called to start another command.
*
* Note: Make sure the device(s) you are powering will not pull more current
* than the ESP8266 is able to supply via its GPIO pins (this is especially
* important when multiple devices are on the same bus and they are all
* performing a power-intensive operation at the same time (i.e. multiple
* DS18B20 sensors, which have all been given a "convert T" operation by using
* onewire_skip_rom())).
*
* Note: This routine will check to make sure that the bus is already high
* before driving it, to make sure it doesn't attempt to drive it high while
* something else is pulling it low (which could cause a reset or damage the
* ESP8266).
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*
* @returns `true` on success, `false` on error.
*/
bool onewire_power(int pin);
/** Stop forcing power onto the bus.
*
* You only need to do this if you previously called onewire_power() to drive
* the bus high and now want to allow it to float instead. Note that
* onewire_reset() will also automatically depower the bus first, so you do
* not need to call this first if you just want to start a new operation.
*
* @param pin The GPIO pin connected to the 1-Wire bus.
*/
void onewire_depower(int pin);
/** Clear the search state so that it will start from the beginning on the next
* call to onewire_search_next().
*
* @param search The onewire_search_t structure to reset.
*/
void onewire_search_start(onewire_search_t *search);
/** Setup the search to search for devices with the specified "family code".
*
* @param search The onewire_search_t structure to update.
* @param family_code The "family code" to search for.
*/
void onewire_search_prefix(onewire_search_t *search, uint8_t family_code);
/** Search for the next device on the bus.
*
* The order of returned device addresses is deterministic. You will always
* get the same devices in the same order.
*
* @returns the address of the next device on the bus, or ::ONEWIRE_NONE if
* there is no next address. ::ONEWIRE_NONE might also mean that the bus is
* shorted, there are no devices, or you have already retrieved all of them.
*
* It might be a good idea to check the CRC to make sure you didn't get
* garbage.
*/
onewire_addr_t onewire_search_next(onewire_search_t *search, int pin);
/** Compute a Dallas Semiconductor 8 bit CRC.
*
* These are used in the ROM address and scratchpad registers to verify the
* transmitted data is correct.
*/
uint8_t onewire_crc8(const uint8_t *data, uint8_t len);
/** Compute the 1-Wire CRC16 and compare it against the received CRC.
*
* Example usage (reading a DS2408):
* @code
* // Put everything in a buffer so we can compute the CRC easily.
* uint8_t buf[13];
* buf[0] = 0xF0; // Read PIO Registers
* buf[1] = 0x88; // LSB address
* buf[2] = 0x00; // MSB address
* onewire_write_bytes(pin, buf, 3); // Write 3 cmd bytes
* onewire_read_bytes(pin, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
* if (!onewire_check_crc16(buf, 11, &buf[11])) {
* // TODO: Handle error.
* }
* @endcode
*
* @param input Array of bytes to checksum.
* @param len Number of bytes in `input`
* @param inverted_crc The two CRC16 bytes in the received data.
* This should just point into the received data,
* *not* at a 16-bit integer.
* @param crc_iv The crc starting value (optional)
*
* @returns `true` if the CRC matches, `false` otherwise.
*/
bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv);
/** Compute a Dallas Semiconductor 16 bit CRC.
*
* This is required to check the integrity of data received from many 1-Wire
* devices. Note that the CRC computed here is *not* what you'll get from the
* 1-Wire network, for two reasons:
* 1. The CRC is transmitted bitwise inverted.
* 2. Depending on the endian-ness of your processor, the binary
* representation of the two-byte return value may have a different
* byte order than the two bytes you get from 1-Wire.
*
* @param input Array of bytes to checksum.
* @param len How many bytes are in `input`.
* @param crc_iv The crc starting value (optional)
*
* @returns the CRC16, as defined by Dallas Semiconductor.
*/
uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv);
#ifdef __cplusplus
}
#endif
#endif /* __ONEWIRE_H__ */
#endif