working temp sensor
This commit is contained in:
parent
e4f0dab61c
commit
97dfb13b74
10 changed files with 503 additions and 1116 deletions
31
embadet/components/README.md
Normal file
31
embadet/components/README.md
Normal file
|
@ -0,0 +1,31 @@
|
|||
# DS18B20 Component
|
||||
Simple DS18B20 temperature sensor library for [ESP8266 RTOS SDK](https://github.com/espressif/ESP8266_RTOS_SDK) for reading Celsius temperature with different resolutions from singular device.
|
||||
|
||||
## Usage
|
||||
```
|
||||
// Create variable for handler
|
||||
ds18b20_handler_t sensor;
|
||||
|
||||
// Check for any initialization failures
|
||||
if (!ds18b20_init(&sensor, GPIO_NUM_12, TEMP_RES_12_BIT))
|
||||
{
|
||||
ESP_LOGE("TAG", "Failed to initalize DS18B20!");
|
||||
|
||||
return 0; // Exit
|
||||
}
|
||||
|
||||
float temp = 0;
|
||||
|
||||
// Initalize conversion
|
||||
ds18b20_convert_temp(&sensor);
|
||||
|
||||
// If you doesn't convert temperature you may read 85.0 Celsius,
|
||||
// as it is default temperature set by DS18B20 if convert command wasn't issued.
|
||||
temp = ds18b20_read_temp(&sensor); // Read temperature
|
||||
|
||||
// Print temperature with 4 decimal places
|
||||
// (12 bit resolution measurement accuracy is 0.0625 Celsius)
|
||||
ESP_LOGI("TAG", "Temperature = %.4f", temp);
|
||||
```
|
||||
|
||||
> **_NOTE:_** If last statement doesn't print temperature you may have to disable Newlib nano in `menuconfig` of RTOS SDK.
|
18
embadet/components/ds18b20/component.mk
Normal file → Executable file
18
embadet/components/ds18b20/component.mk
Normal file → Executable file
|
@ -1,15 +1,5 @@
|
|||
# Component makefile for extras/ds18b20
|
||||
#
|
||||
# Component Makefile
|
||||
#
|
||||
|
||||
# expected anyone using bmp driver includes it as 'ds18b20/ds18b20.h'
|
||||
INC_DIRS += $(ds18b20_ROOT)..
|
||||
|
||||
# args for passing into compile rule generation
|
||||
ds18b20_SRC_DIR = $(ds18b20_ROOT)
|
||||
|
||||
# users can override this setting and get console debug output
|
||||
DS18B20_DEBUG ?= 0
|
||||
ifeq ($(DS18B20_DEBUG),1)
|
||||
ds18b20_CFLAGS = $(CFLAGS) -DDS18B20_DEBUG
|
||||
endif
|
||||
|
||||
$(eval $(call component_compile_rules,ds18b20))
|
||||
COMPONENT_ADD_INCLUDEDIRS := .
|
296
embadet/components/ds18b20/ds18b20.c
Normal file → Executable file
296
embadet/components/ds18b20/ds18b20.c
Normal file → Executable file
|
@ -1,244 +1,120 @@
|
|||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "math.h"
|
||||
|
||||
|
||||
#include "ds18b20.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
#define DS18B20_WRITE_SCRATCHPAD 0x4E
|
||||
#define DS18B20_READ_SCRATCHPAD 0xBE
|
||||
#define DS18B20_COPY_SCRATCHPAD 0x48
|
||||
#define DS18B20_READ_EEPROM 0xB8
|
||||
#define DS18B20_READ_PWRSUPPLY 0xB4
|
||||
#define DS18B20_SEARCHROM 0xF0
|
||||
#define DS18B20_SKIP_ROM 0xCC
|
||||
#define DS18B20_READROM 0x33
|
||||
#define DS18B20_MATCHROM 0x55
|
||||
#define DS18B20_ALARMSEARCH 0xEC
|
||||
#define DS18B20_CONVERT_T 0x44
|
||||
static const char* TAG_DS18B20 = "DS18B20";
|
||||
static const uint16_t ds18b20_temp_conv_time[] = {94, 188, 375, 750}; // ms
|
||||
static const uint16_t ds18b20_resolution_val[] = {0x1F, 0x3F, 0x5F, 0x7F};
|
||||
|
||||
#define os_sleep_ms(x) vTaskDelay(((x) + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS)
|
||||
uint8_t ds18b20_init(ds18b20_handler_t *device, gpio_num_t pin, ds18b20_temp_res_t resolution)
|
||||
{
|
||||
if (!device)
|
||||
{
|
||||
ESP_LOGW(TAG_DS18B20, "device is null!");
|
||||
|
||||
#define DS18B20_FAMILY_ID 0x28
|
||||
#define DS18S20_FAMILY_ID 0x10
|
||||
|
||||
#ifdef DS18B20_DEBUG
|
||||
#define debug(fmt, ...) printf("%s" fmt "\n", "DS18B20: ", ## __VA_ARGS__);
|
||||
#else
|
||||
#define debug(fmt, ...)
|
||||
#endif
|
||||
|
||||
uint8_t ds18b20_read_all(uint8_t pin, ds_sensor_t *result) {
|
||||
onewire_addr_t addr;
|
||||
onewire_search_t search;
|
||||
uint8_t sensor_id = 0;
|
||||
|
||||
onewire_search_start(&search);
|
||||
|
||||
while ((addr = onewire_search_next(&search, pin)) != ONEWIRE_NONE) {
|
||||
uint8_t crc = onewire_crc8((uint8_t *)&addr, 7);
|
||||
if (crc != (addr >> 56)){
|
||||
debug("CRC check failed: %02X %02X\n", (unsigned)(addr >> 56), crc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
onewire_reset(pin);
|
||||
onewire_select(pin, addr);
|
||||
onewire_write(pin, DS18B20_CONVERT_T);
|
||||
|
||||
onewire_power(pin);
|
||||
vTaskDelay(750 / portTICK_PERIOD_MS);
|
||||
|
||||
onewire_reset(pin);
|
||||
onewire_select(pin, addr);
|
||||
onewire_write(pin, DS18B20_READ_SCRATCHPAD);
|
||||
|
||||
uint8_t get[10];
|
||||
|
||||
for (int k=0;k<9;k++){
|
||||
get[k]=onewire_read(pin);
|
||||
}
|
||||
|
||||
//debug("\n ScratchPAD DATA = %X %X %X %X %X %X %X %X %X\n",get[8],get[7],get[6],get[5],get[4],get[3],get[2],get[1],get[0]);
|
||||
crc = onewire_crc8(get, 8);
|
||||
|
||||
if (crc != get[8]){
|
||||
debug("CRC check failed: %02X %02X\n", get[8], crc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t temp_msb = get[1]; // Sign byte + lsbit
|
||||
uint8_t temp_lsb = get[0]; // Temp data plus lsb
|
||||
uint16_t temp = temp_msb << 8 | temp_lsb;
|
||||
|
||||
float temperature;
|
||||
|
||||
temperature = (temp * 625.0)/10000;
|
||||
//debug("Got a DS18B20 Reading: %d.%02d\n", (int)temperature, (int)(temperature - (int)temperature) * 100);
|
||||
result[sensor_id].id = sensor_id;
|
||||
result[sensor_id].value = temperature;
|
||||
sensor_id++;
|
||||
}
|
||||
return sensor_id;
|
||||
}
|
||||
|
||||
float ds18b20_read_single(uint8_t pin) {
|
||||
|
||||
onewire_reset(pin);
|
||||
onewire_skip_rom(pin);
|
||||
onewire_write(pin, DS18B20_CONVERT_T);
|
||||
|
||||
onewire_power(pin);
|
||||
vTaskDelay(750 / portTICK_PERIOD_MS);
|
||||
|
||||
onewire_reset(pin);
|
||||
onewire_skip_rom(pin);
|
||||
onewire_write(pin, DS18B20_READ_SCRATCHPAD);
|
||||
|
||||
uint8_t get[10];
|
||||
|
||||
for (int k=0;k<9;k++){
|
||||
get[k]=onewire_read(pin);
|
||||
}
|
||||
|
||||
//debug("\n ScratchPAD DATA = %X %X %X %X %X %X %X %X %X\n",get[8],get[7],get[6],get[5],get[4],get[3],get[2],get[1],get[0]);
|
||||
uint8_t crc = onewire_crc8(get, 8);
|
||||
|
||||
if (crc != get[8]){
|
||||
debug("CRC check failed: %02X %02X", get[8], crc);
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t temp_msb = get[1]; // Sign byte + lsbit
|
||||
uint8_t temp_lsb = get[0]; // Temp data plus lsb
|
||||
if (!onewire_init(&device->bus, pin, NULL))
|
||||
{
|
||||
ESP_LOGW(TAG_DS18B20, "Failed to initialize onewire bus");
|
||||
|
||||
uint16_t temp = temp_msb << 8 | temp_lsb;
|
||||
return 0;
|
||||
}
|
||||
|
||||
float temperature;
|
||||
device->res = resolution;
|
||||
|
||||
temperature = (temp * 625.0)/10000;
|
||||
return temperature;
|
||||
//debug("Got a DS18B20 Reading: %d.%02d\n", (int)temperature, (int)(temperature - (int)temperature) * 100);
|
||||
// Configure resolution
|
||||
ds18b20_write_scratchpad(device);
|
||||
ds18b20_read_scratchpad(device);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
bool ds18b20_measure(int pin, ds18b20_addr_t addr, bool wait) {
|
||||
if (!onewire_reset(pin)) {
|
||||
return false;
|
||||
}
|
||||
if (addr == DS18B20_ANY) {
|
||||
onewire_skip_rom(pin);
|
||||
} else {
|
||||
onewire_select(pin, addr);
|
||||
}
|
||||
taskENTER_CRITICAL();
|
||||
onewire_write(pin, DS18B20_CONVERT_T);
|
||||
// For parasitic devices, power must be applied within 10us after issuing
|
||||
// the convert command.
|
||||
onewire_power(pin);
|
||||
taskEXIT_CRITICAL();
|
||||
void ds18b20_send_command(ds18b20_handler_t *device, ds18b20_commands_t command)
|
||||
{
|
||||
uint8_t payload = 0x0 ^ command;
|
||||
|
||||
if (wait) {
|
||||
os_sleep_ms(750);
|
||||
onewire_depower(pin);
|
||||
}
|
||||
|
||||
return true;
|
||||
onewire_write_byte(&device->bus, payload);
|
||||
}
|
||||
|
||||
bool ds18b20_read_scratchpad(int pin, ds18b20_addr_t addr, uint8_t *buffer) {
|
||||
uint8_t crc;
|
||||
uint8_t expected_crc;
|
||||
void ds18b20_convert_temp(ds18b20_handler_t *device)
|
||||
{
|
||||
onewire_reset(&device->bus);
|
||||
onewire_send_command(&device->bus, _ROM_SKIP);
|
||||
|
||||
if (!onewire_reset(pin)) {
|
||||
return false;
|
||||
}
|
||||
if (addr == DS18B20_ANY) {
|
||||
onewire_skip_rom(pin);
|
||||
} else {
|
||||
onewire_select(pin, addr);
|
||||
}
|
||||
onewire_write(pin, DS18B20_READ_SCRATCHPAD);
|
||||
ds18b20_send_command(device, _CONVERT_T);
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
buffer[i] = onewire_read(pin);
|
||||
}
|
||||
crc = onewire_read(pin);
|
||||
|
||||
expected_crc = onewire_crc8(buffer, 8);
|
||||
if (crc != expected_crc) {
|
||||
debug("CRC check failed reading scratchpad: %02x %02x %02x %02x %02x %02x %02x %02x : %02x (expected %02x)\n", buffer[0], buffer[1], buffer[2], buffer[3], buffer[4], buffer[5], buffer[6], buffer[7], crc, expected_crc);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
vTaskDelay(pdMS_TO_TICKS(ds18b20_temp_conv_time[device->res]));
|
||||
}
|
||||
|
||||
float ds18b20_read_temperature(int pin, ds18b20_addr_t addr) {
|
||||
uint8_t scratchpad[8];
|
||||
int16_t temp;
|
||||
void ds18b20_write_scratchpad(ds18b20_handler_t *device)
|
||||
{
|
||||
onewire_reset(&device->bus);
|
||||
onewire_send_command(&device->bus, _ROM_SKIP);
|
||||
|
||||
if (!ds18b20_read_scratchpad(pin, addr, scratchpad)) {
|
||||
return NAN;
|
||||
}
|
||||
ds18b20_send_command(device, _SCRATCH_WRITE);
|
||||
|
||||
temp = scratchpad[1] << 8 | scratchpad[0];
|
||||
|
||||
float res;
|
||||
if ((uint8_t)addr == DS18B20_FAMILY_ID) {
|
||||
res = ((float)temp * 625.0)/10000;
|
||||
}
|
||||
else {
|
||||
temp = ((temp & 0xfffe) << 3) + (16 - scratchpad[6]) - 4;
|
||||
res = ((float)temp * 625.0)/10000 - 0.25;
|
||||
}
|
||||
return res;
|
||||
// Th and Tl registers
|
||||
onewire_write_byte(&device->bus, 0);
|
||||
onewire_write_byte(&device->bus, 0);
|
||||
// Resolution value
|
||||
onewire_write_byte(&device->bus, ds18b20_resolution_val[device->res]);
|
||||
}
|
||||
|
||||
float ds18b20_measure_and_read(int pin, ds18b20_addr_t addr) {
|
||||
if (!ds18b20_measure(pin, addr, true)) {
|
||||
return NAN;
|
||||
}
|
||||
return ds18b20_read_temperature(pin, addr);
|
||||
void ds18b20_copy_scratchpad(ds18b20_handler_t *device)
|
||||
{
|
||||
onewire_reset(&device->bus);
|
||||
onewire_send_command(&device->bus, _ROM_SKIP);
|
||||
|
||||
ds18b20_send_command(device, _SCRATCH_COPY);
|
||||
}
|
||||
|
||||
bool ds18b20_measure_and_read_multi(int pin, ds18b20_addr_t *addr_list, int addr_count, float *result_list) {
|
||||
if (!ds18b20_measure(pin, DS18B20_ANY, true)) {
|
||||
for (int i=0; i < addr_count; i++) {
|
||||
result_list[i] = NAN;
|
||||
}
|
||||
return false;
|
||||
void ds18b20_read_scratchpad(ds18b20_handler_t *device)
|
||||
{
|
||||
onewire_reset(&device->bus);
|
||||
onewire_send_command(&device->bus, _ROM_SKIP);
|
||||
|
||||
ds18b20_send_command(device, _SCRATCH_READ);
|
||||
|
||||
uint8_t i;
|
||||
for (i = 0; i < 9; i++)
|
||||
{
|
||||
device->scratchpad[i] = onewire_read_byte(&device->bus);
|
||||
}
|
||||
return ds18b20_read_temp_multi(pin, addr_list, addr_count, result_list);
|
||||
}
|
||||
|
||||
int ds18b20_scan_devices(int pin, ds18b20_addr_t *addr_list, int addr_count) {
|
||||
onewire_search_t search;
|
||||
onewire_addr_t addr;
|
||||
int found = 0;
|
||||
|
||||
onewire_search_start(&search);
|
||||
while ((addr = onewire_search_next(&search, pin)) != ONEWIRE_NONE) {
|
||||
uint8_t family_id = (uint8_t)addr;
|
||||
if (family_id == DS18B20_FAMILY_ID || family_id == DS18S20_FAMILY_ID) {
|
||||
if (found < addr_count) {
|
||||
addr_list[found] = addr;
|
||||
}
|
||||
found++;
|
||||
}
|
||||
void ds18b20_print_scratchpad(ds18b20_handler_t *device)
|
||||
{
|
||||
uint8_t i;
|
||||
for (i = 0; i < 9; i++)
|
||||
{
|
||||
printf("%x ", device->scratchpad[i]);
|
||||
}
|
||||
return found;
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
bool ds18b20_read_temp_multi(int pin, ds18b20_addr_t *addr_list, int addr_count, float *result_list) {
|
||||
bool result = true;
|
||||
float ds18b20_read_temp(ds18b20_handler_t *device)
|
||||
{
|
||||
ds18b20_read_scratchpad(device);
|
||||
|
||||
for (int i = 0; i < addr_count; i++) {
|
||||
result_list[i] = ds18b20_read_temperature(pin, addr_list[i]);
|
||||
if (isnan(result_list[i])) {
|
||||
result = false;
|
||||
}
|
||||
uint8_t sign = 0x0;
|
||||
uint8_t lsb = device->scratchpad[0];
|
||||
uint8_t mask = 0xFF << (TEMP_RES_12_BIT - device->res);
|
||||
lsb &= mask; // Mask out last 3 bits accordingly
|
||||
uint8_t msb = device->scratchpad[1];
|
||||
|
||||
sign = msb & 0x80;
|
||||
int16_t temp = 0x0;
|
||||
|
||||
temp = lsb + (msb << 8);
|
||||
|
||||
if (sign)
|
||||
{
|
||||
temp = ~(-temp) + 1; // Convert signed two complement's
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
return temp / 16.0;
|
||||
}
|
234
embadet/components/ds18b20/ds18b20.h
Normal file → Executable file
234
embadet/components/ds18b20/ds18b20.h
Normal file → Executable file
|
@ -1,157 +1,97 @@
|
|||
#ifndef DRIVER_DS18B20_H_
|
||||
#define DRIVER_DS18B20_H_
|
||||
#include <onewire/onewire.h>
|
||||
#ifndef DS18B20_H
|
||||
#define DS18B20_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include "onewire.h"
|
||||
|
||||
/** @file ds18b20.h
|
||||
*
|
||||
* Communicate with the DS18B20 family of one-wire temperature sensor ICs.
|
||||
*
|
||||
*/
|
||||
typedef enum {
|
||||
TEMP_RES_9_BIT = 0,
|
||||
TEMP_RES_10_BIT = 1,
|
||||
TEMP_RES_11_BIT = 2,
|
||||
TEMP_RES_12_BIT = 3
|
||||
} ds18b20_temp_res_t;
|
||||
|
||||
typedef onewire_addr_t ds18b20_addr_t;
|
||||
typedef enum {
|
||||
_SCRATCH_WRITE = 0x4E,
|
||||
_SCRATCH_READ = 0xBE,
|
||||
_SCRATCH_COPY = 0x48,
|
||||
_CONVERT_T = 0x44
|
||||
} ds18b20_commands_t;
|
||||
|
||||
/** An address value which can be used to indicate "any device on the bus" */
|
||||
#define DS18B20_ANY ONEWIRE_NONE
|
||||
|
||||
/** Find the addresses of all DS18B20 devices on the bus.
|
||||
*
|
||||
* Scans the bus for all devices and places their addresses in the supplied
|
||||
* array. If there are more than `addr_count` devices on the bus, only the
|
||||
* first `addr_count` are recorded.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the DS18B20 bus
|
||||
* @param addr_list A pointer to an array of ds18b20_addr_t values. This
|
||||
* will be populated with the addresses of the found
|
||||
* devices.
|
||||
* @param addr_count Number of slots in the `addr_list` array. At most this
|
||||
* many addresses will be returned.
|
||||
*
|
||||
* @returns The number of devices found. Note that this may be less than,
|
||||
* equal to, or more than `addr_count`, depending on how many DS18B20 devices
|
||||
* are attached to the bus.
|
||||
*/
|
||||
int ds18b20_scan_devices(int pin, ds18b20_addr_t *addr_list, int addr_count);
|
||||
|
||||
/** Tell one or more sensors to perform a temperature measurement and
|
||||
* conversion (CONVERT_T) operation. This operation can take up to 750ms to
|
||||
* complete.
|
||||
*
|
||||
* If `wait=true`, this routine will automatically drive the pin high for the
|
||||
* necessary 750ms after issuing the command to ensure parasitically-powered
|
||||
* devices have enough power to perform the conversion operation (for
|
||||
* non-parasitically-powered devices, this is not necessary but does not
|
||||
* hurt). If `wait=false`, this routine will drive the pin high, but will
|
||||
* then return immediately. It is up to the caller to wait the requisite time
|
||||
* and then depower the bus using onewire_depower() or by issuing another
|
||||
* command once conversion is done.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the DS18B20 device
|
||||
* @param addr The 64-bit address of the device on the bus. This can be set
|
||||
* to ::DS18B20_ANY to send the command to all devices on the bus
|
||||
* at the same time.
|
||||
* @param wait Whether to wait for the necessary 750ms for the DS18B20 to
|
||||
* finish performing the conversion before returning to the
|
||||
* caller (You will normally want to do this).
|
||||
*
|
||||
* @returns `true` if the command was successfully issued, or `false` on error.
|
||||
*/
|
||||
bool ds18b20_measure(int pin, ds18b20_addr_t addr, bool wait);
|
||||
|
||||
/** Read the value from the last CONVERT_T operation.
|
||||
*
|
||||
* This should be called after ds18b20_measure() to fetch the result of the
|
||||
* temperature measurement.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the DS18B20 device
|
||||
* @param addr The 64-bit address of the device to read. This can be set
|
||||
* to ::DS18B20_ANY to read any device on the bus (but note
|
||||
* that this will only work if there is exactly one device
|
||||
* connected, or they will corrupt each others' transmissions)
|
||||
*
|
||||
* @returns The temperature in degrees Celsius, or NaN if there was an error.
|
||||
*/
|
||||
float ds18b20_read_temperature(int pin, ds18b20_addr_t addr);
|
||||
|
||||
/** Read the value from the last CONVERT_T operation for multiple devices.
|
||||
*
|
||||
* This should be called after ds18b20_measure() to fetch the result of the
|
||||
* temperature measurement.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the DS18B20 bus
|
||||
* @param addr_list A list of addresses for devices to read.
|
||||
* @param addr_count The number of entries in `addr_list`.
|
||||
* @param result_list An array of floats to hold the returned temperature
|
||||
* values. It should have at least `addr_count` entries.
|
||||
*
|
||||
* @returns `true` if all temperatures were fetched successfully, or `false`
|
||||
* if one or more had errors (the temperature for erroring devices will be
|
||||
* returned as NaN).
|
||||
*/
|
||||
bool ds18b20_read_temp_multi(int pin, ds18b20_addr_t *addr_list, int addr_count, float *result_list);
|
||||
|
||||
/** Perform a ds18b20_measure() followed by ds18b20_read_temperature()
|
||||
*
|
||||
* @param pin The GPIO pin connected to the DS18B20 device
|
||||
* @param addr The 64-bit address of the device to read. This can be set
|
||||
* to ::DS18B20_ANY to read any device on the bus (but note
|
||||
* that this will only work if there is exactly one device
|
||||
* connected, or they will corrupt each others' transmissions)
|
||||
*
|
||||
* @returns The temperature in degrees Celsius, or NaN if there was an error.
|
||||
*/
|
||||
float ds18b20_measure_and_read(int pin, ds18b20_addr_t addr);
|
||||
|
||||
/** Perform a ds18b20_measure() followed by ds18b20_read_temp_multi()
|
||||
*
|
||||
* @param pin The GPIO pin connected to the DS18B20 bus
|
||||
* @param addr_list A list of addresses for devices to read.
|
||||
* @param addr_count The number of entries in `addr_list`.
|
||||
* @param result_list An array of floats to hold the returned temperature
|
||||
* values. It should have at least `addr_count` entries.
|
||||
*
|
||||
* @returns `true` if all temperatures were fetched successfully, or `false`
|
||||
* if one or more had errors (the temperature for erroring devices will be
|
||||
* returned as NaN).
|
||||
*/
|
||||
bool ds18b20_measure_and_read_multi(int pin, ds18b20_addr_t *addr_list, int addr_count, float *result_list);
|
||||
|
||||
/** Read the scratchpad data for a particular DS18B20 device.
|
||||
*
|
||||
* This is not generally necessary to do directly. It is done automatically
|
||||
* as part of ds18b20_read_temperature().
|
||||
*
|
||||
* @param pin The GPIO pin connected to the DS18B20 device
|
||||
* @param addr The 64-bit address of the device to read. This can be set
|
||||
* to ::DS18B20_ANY to read any device on the bus (but note
|
||||
* that this will only work if there is exactly one device
|
||||
* connected, or they will corrupt each others' transmissions)
|
||||
* @param buffer An 8-byte buffer to hold the read data.
|
||||
*
|
||||
* @returns `true` if the data was read successfully, or `false` on error.
|
||||
*/
|
||||
bool ds18b20_read_scratchpad(int pin, ds18b20_addr_t addr, uint8_t *buffer);
|
||||
|
||||
// The following are obsolete/deprecated APIs
|
||||
typedef uint8_t ds18b20_scratchpad_t[9];
|
||||
|
||||
typedef struct {
|
||||
uint8_t id;
|
||||
float value;
|
||||
} ds_sensor_t;
|
||||
onewire_bus_handle_t bus;
|
||||
ds18b20_temp_res_t res;
|
||||
ds18b20_scratchpad_t scratchpad;
|
||||
} ds18b20_handler_t;
|
||||
|
||||
// Scan all ds18b20 sensors on bus and return its amount.
|
||||
// Result are saved in array of ds_sensor_t structure.
|
||||
uint8_t ds18b20_read_all(uint8_t pin, ds_sensor_t *result);
|
||||
/**
|
||||
* @brief Initialize DS18B20
|
||||
*
|
||||
* @param device DS18B20 handler
|
||||
* @param pin Data pin
|
||||
* @param resolution Temperature resolution
|
||||
*
|
||||
* @retval 1: Success
|
||||
* @retval 0: Incorrect pin or gpio configuration failed (Logs tells which happened)
|
||||
*/
|
||||
uint8_t ds18b20_init(ds18b20_handler_t *device, gpio_num_t pin, ds18b20_temp_res_t resolution);
|
||||
|
||||
// This method is just to demonstrate how to read
|
||||
// temperature from single dallas chip.
|
||||
float ds18b20_read_single(uint8_t pin);
|
||||
/**
|
||||
* @brief Send command to DS18B20
|
||||
*
|
||||
* @param device DS18B20 handler
|
||||
* @param command Function command
|
||||
*/
|
||||
void ds18b20_send_command(ds18b20_handler_t *device, ds18b20_commands_t command);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* @brief Write to scratchpad
|
||||
*
|
||||
* @param device DS18B20 handler
|
||||
*/
|
||||
void ds18b20_write_scratchpad(ds18b20_handler_t *device);
|
||||
|
||||
#endif /* DRIVER_DS18B20_H_ */
|
||||
/**
|
||||
* @brief Read from scratchpad
|
||||
*
|
||||
* @param device DS18B20 handler
|
||||
*/
|
||||
void ds18b20_read_scratchpad(ds18b20_handler_t *device);
|
||||
|
||||
/**
|
||||
* @brief Copy to scratchpad
|
||||
*
|
||||
* @param device DS18B20 handler
|
||||
*/
|
||||
void ds18b20_copy_scratchpad(ds18b20_handler_t *device);
|
||||
|
||||
/**
|
||||
* @brief Print scratchpad bytes
|
||||
*
|
||||
* @param device DS18B20 handler
|
||||
*/
|
||||
void ds18b20_print_scratchpad(ds18b20_handler_t *device);
|
||||
|
||||
/**
|
||||
* @brief Initialize temperature conversion and wait for conversion
|
||||
*
|
||||
* Function sends CONV_T command and waits for X ms according to `ds18b20_temp_conv_time` static array
|
||||
*
|
||||
* @warning Should be called before `ds18b20_convert_temp()` function
|
||||
*
|
||||
* @param device DS18B20 handler
|
||||
*/
|
||||
void ds18b20_convert_temp(ds18b20_handler_t *device);
|
||||
|
||||
/**
|
||||
* @brief Read temperature from scratchpad
|
||||
*
|
||||
* Function reads temperature from scratchpad and converts it to Celsius.
|
||||
* @warning `ds18b20_convert_temp()` have to be called before for updated temperature.
|
||||
*
|
||||
* @param device DS18B20 handler
|
||||
*/
|
||||
float ds18b20_read_temp(ds18b20_handler_t *device);
|
||||
|
||||
#endif
|
|
@ -1,31 +0,0 @@
|
|||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2014 zeroday nodemcu.com
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
Portions copyright (C) 2000 Dallas Semiconductor Corporation, under the
|
||||
following additional terms:
|
||||
|
||||
Except as contained in this notice, the name of Dallas Semiconductor
|
||||
shall not be used except as stated in the Dallas Semiconductor
|
||||
Branding Policy.
|
||||
|
|
@ -1,14 +0,0 @@
|
|||
# Yet another one wire driver for the ESP8266
|
||||
|
||||
This is a port of a bit-banging one wire driver based on the implementation
|
||||
from NodeMCU.
|
||||
|
||||
This, in turn, appears to have been based on the PJRC Teensy driver
|
||||
(https://www.pjrc.com/teensy/td_libs_OneWire.html), by Jim Studt, Paul
|
||||
Stoffregen, and a host of others.
|
||||
|
||||
The original code is licensed under the MIT license. The CRC code was taken
|
||||
(at least partially) from Dallas Semiconductor sample code, which was licensed
|
||||
under an MIT license with an additional clause (prohibiting inappropriate use
|
||||
of the Dallas Semiconductor name). See the accompanying LICENSE file for
|
||||
details.
|
13
embadet/components/onewire/component.mk
Normal file → Executable file
13
embadet/components/onewire/component.mk
Normal file → Executable file
|
@ -1,10 +1,5 @@
|
|||
# Component makefile for extras/onewire
|
||||
#
|
||||
# Component Makefile
|
||||
#
|
||||
|
||||
# expected anyone using onewire driver includes it as 'onewire/onewire.h'
|
||||
INC_DIRS += $(onewire_ROOT)..
|
||||
|
||||
# args for passing into compile rule generation
|
||||
onewire_INC_DIR =
|
||||
onewire_SRC_DIR = $(onewire_ROOT)
|
||||
|
||||
$(eval $(call component_compile_rules,onewire))
|
||||
COMPONENT_ADD_INCLUDEDIRS := .
|
602
embadet/components/onewire/onewire.c
Normal file → Executable file
602
embadet/components/onewire/onewire.c
Normal file → Executable file
|
@ -1,453 +1,175 @@
|
|||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "esp_log.h"
|
||||
#include "rom/ets_sys.h"
|
||||
#include "onewire.h"
|
||||
#include "string.h"
|
||||
#include "task.h"
|
||||
#include "esp/gpio.h"
|
||||
|
||||
#define ONEWIRE_SELECT_ROM 0x55
|
||||
#define ONEWIRE_SKIP_ROM 0xcc
|
||||
#define ONEWIRE_SEARCH 0xf0
|
||||
uint8_t onewire_configure_gpio(gpio_num_t pin, gpio_config_t *custom_config)
|
||||
{
|
||||
if (!GPIO_IS_VALID_GPIO(pin))
|
||||
{
|
||||
ESP_LOGE(TAG_ONEWIRE, "Provided pin is incorrect!");
|
||||
|
||||
// Waits up to `max_wait` microseconds for the specified pin to go high.
|
||||
// Returns true if successful, false if the bus never comes high (likely
|
||||
// shorted).
|
||||
static inline bool _onewire_wait_for_bus(int pin, int max_wait) {
|
||||
bool state;
|
||||
for (int i = 0; i < ((max_wait + 4) / 5); i++) {
|
||||
if (gpio_read(pin)) break;
|
||||
sdk_os_delay_us(5);
|
||||
}
|
||||
state = gpio_read(pin);
|
||||
// Wait an extra 1us to make sure the devices have an adequate recovery
|
||||
// time before we drive things low again.
|
||||
sdk_os_delay_us(1);
|
||||
return state;
|
||||
}
|
||||
|
||||
// Perform the onewire reset function. We will wait up to 250uS for
|
||||
// the bus to come high, if it doesn't then it is broken or shorted
|
||||
// and we return false;
|
||||
//
|
||||
// Returns true if a device asserted a presence pulse, false otherwise.
|
||||
//
|
||||
bool onewire_reset(int pin) {
|
||||
bool r;
|
||||
|
||||
gpio_enable(pin, GPIO_OUT_OPEN_DRAIN);
|
||||
gpio_write(pin, 1);
|
||||
// wait until the wire is high... just in case
|
||||
if (!_onewire_wait_for_bus(pin, 250)) return false;
|
||||
|
||||
gpio_write(pin, 0);
|
||||
sdk_os_delay_us(480);
|
||||
|
||||
taskENTER_CRITICAL();
|
||||
gpio_write(pin, 1); // allow it to float
|
||||
sdk_os_delay_us(70);
|
||||
r = !gpio_read(pin);
|
||||
taskEXIT_CRITICAL();
|
||||
|
||||
// Wait for all devices to finish pulling the bus low before returning
|
||||
if (!_onewire_wait_for_bus(pin, 410)) return false;
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
static bool _onewire_write_bit(int pin, bool v) {
|
||||
if (!_onewire_wait_for_bus(pin, 10)) return false;
|
||||
if (v) {
|
||||
taskENTER_CRITICAL();
|
||||
gpio_write(pin, 0); // drive output low
|
||||
sdk_os_delay_us(10);
|
||||
gpio_write(pin, 1); // allow output high
|
||||
taskEXIT_CRITICAL();
|
||||
sdk_os_delay_us(55);
|
||||
} else {
|
||||
taskENTER_CRITICAL();
|
||||
gpio_write(pin, 0); // drive output low
|
||||
sdk_os_delay_us(65);
|
||||
gpio_write(pin, 1); // allow output high
|
||||
taskEXIT_CRITICAL();
|
||||
}
|
||||
sdk_os_delay_us(1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static int _onewire_read_bit(int pin) {
|
||||
int r;
|
||||
|
||||
if (!_onewire_wait_for_bus(pin, 10)) return -1;
|
||||
taskENTER_CRITICAL();
|
||||
gpio_write(pin, 0);
|
||||
sdk_os_delay_us(2);
|
||||
gpio_write(pin, 1); // let pin float, pull up will raise
|
||||
sdk_os_delay_us(11);
|
||||
r = gpio_read(pin); // Must sample within 15us of start
|
||||
taskEXIT_CRITICAL();
|
||||
sdk_os_delay_us(48);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
// Write a byte. The writing code uses open-drain mode and expects the pullup
|
||||
// resistor to pull the line high when not driven low. If you need strong
|
||||
// power after the write (e.g. DS18B20 in parasite power mode) then call
|
||||
// onewire_power() after this is complete to actively drive the line high.
|
||||
//
|
||||
bool onewire_write(int pin, uint8_t v) {
|
||||
uint8_t bitMask;
|
||||
|
||||
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
||||
if (!_onewire_write_bit(pin, (bitMask & v))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool onewire_write_bytes(int pin, const uint8_t *buf, size_t count) {
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
if (!onewire_write(pin, buf[i])) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Read a byte
|
||||
//
|
||||
int onewire_read(int pin) {
|
||||
uint8_t bitMask;
|
||||
int r = 0;
|
||||
int bit;
|
||||
|
||||
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
||||
bit = _onewire_read_bit(pin);
|
||||
if (bit < 0) {
|
||||
return -1;
|
||||
} else if (bit) {
|
||||
r |= bitMask;
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
bool onewire_read_bytes(int pin, uint8_t *buf, size_t count) {
|
||||
size_t i;
|
||||
int b;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
b = onewire_read(pin);
|
||||
if (b < 0) return false;
|
||||
buf[i] = b;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool onewire_select(int pin, onewire_addr_t addr) {
|
||||
uint8_t i;
|
||||
|
||||
if (!onewire_write(pin, ONEWIRE_SELECT_ROM)) {
|
||||
return false;
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
if (!onewire_write(pin, addr & 0xff)) {
|
||||
return false;
|
||||
}
|
||||
addr >>= 8;
|
||||
gpio_config_t config = {};
|
||||
|
||||
if (!custom_config)
|
||||
{
|
||||
config.intr_type = GPIO_INTR_DISABLE;
|
||||
config.mode = GPIO_MODE_OUTPUT_OD;
|
||||
config.pin_bit_mask = ((uint32_t) 1 << pin);
|
||||
config.pull_down_en = 0;
|
||||
config.pull_up_en = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
config = *custom_config;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool onewire_skip_rom(int pin) {
|
||||
return onewire_write(pin, ONEWIRE_SKIP_ROM);
|
||||
}
|
||||
|
||||
bool onewire_power(int pin) {
|
||||
// Make sure the bus is not being held low before driving it high, or we
|
||||
// may end up shorting ourselves out.
|
||||
if (!_onewire_wait_for_bus(pin, 10)) return false;
|
||||
|
||||
gpio_enable(pin, GPIO_OUTPUT);
|
||||
gpio_write(pin, 1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void onewire_depower(int pin) {
|
||||
gpio_enable(pin, GPIO_OUT_OPEN_DRAIN);
|
||||
}
|
||||
|
||||
void onewire_search_start(onewire_search_t *search) {
|
||||
// reset the search state
|
||||
memset(search, 0, sizeof(*search));
|
||||
}
|
||||
|
||||
void onewire_search_prefix(onewire_search_t *search, uint8_t family_code) {
|
||||
uint8_t i;
|
||||
|
||||
search->rom_no[0] = family_code;
|
||||
for (i = 1; i < 8; i++) {
|
||||
search->rom_no[i] = 0;
|
||||
if (gpio_config(&config) != ESP_OK)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
search->last_discrepancy = 64;
|
||||
search->last_device_found = false;
|
||||
}
|
||||
|
||||
// Perform a search. If the next device has been successfully enumerated, its
|
||||
// ROM address will be returned. If there are no devices, no further
|
||||
// devices, or something horrible happens in the middle of the
|
||||
// enumeration then ONEWIRE_NONE is returned. Use OneWire::reset_search() to
|
||||
// start over.
|
||||
//
|
||||
// --- Replaced by the one from the Dallas Semiconductor web site ---
|
||||
//--------------------------------------------------------------------------
|
||||
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
|
||||
// search state.
|
||||
// Return 1 : device found, ROM number in ROM_NO buffer
|
||||
// 0 : device not found, end of search
|
||||
//
|
||||
onewire_addr_t onewire_search_next(onewire_search_t *search, int pin) {
|
||||
//TODO: add more checking for read/write errors
|
||||
uint8_t id_bit_number;
|
||||
uint8_t last_zero, search_result;
|
||||
int rom_byte_number;
|
||||
int8_t id_bit, cmp_id_bit;
|
||||
onewire_addr_t addr;
|
||||
unsigned char rom_byte_mask;
|
||||
bool search_direction;
|
||||
|
||||
// initialize for search
|
||||
id_bit_number = 1;
|
||||
last_zero = 0;
|
||||
rom_byte_number = 0;
|
||||
rom_byte_mask = 1;
|
||||
search_result = 0;
|
||||
|
||||
// if the last call was not the last one
|
||||
if (!search->last_device_found) {
|
||||
// 1-Wire reset
|
||||
if (!onewire_reset(pin)) {
|
||||
// reset the search
|
||||
search->last_discrepancy = 0;
|
||||
search->last_device_found = false;
|
||||
return ONEWIRE_NONE;
|
||||
}
|
||||
|
||||
// issue the search command
|
||||
onewire_write(pin, ONEWIRE_SEARCH);
|
||||
|
||||
// loop to do the search
|
||||
do {
|
||||
// read a bit and its complement
|
||||
id_bit = _onewire_read_bit(pin);
|
||||
cmp_id_bit = _onewire_read_bit(pin);
|
||||
|
||||
// check for no devices on 1-wire
|
||||
if ((id_bit < 0) || (cmp_id_bit < 0)) {
|
||||
// Read error
|
||||
break;
|
||||
} else if ((id_bit == 1) && (cmp_id_bit == 1)) {
|
||||
break;
|
||||
} else {
|
||||
// all devices coupled have 0 or 1
|
||||
if (id_bit != cmp_id_bit) {
|
||||
search_direction = id_bit; // bit write value for search
|
||||
} else {
|
||||
// if this discrepancy if before the Last Discrepancy
|
||||
// on a previous next then pick the same as last time
|
||||
if (id_bit_number < search->last_discrepancy) {
|
||||
search_direction = ((search->rom_no[rom_byte_number] & rom_byte_mask) > 0);
|
||||
} else {
|
||||
// if equal to last pick 1, if not then pick 0
|
||||
search_direction = (id_bit_number == search->last_discrepancy);
|
||||
}
|
||||
|
||||
// if 0 was picked then record its position in LastZero
|
||||
if (!search_direction) {
|
||||
last_zero = id_bit_number;
|
||||
}
|
||||
}
|
||||
|
||||
// set or clear the bit in the ROM byte rom_byte_number
|
||||
// with mask rom_byte_mask
|
||||
if (search_direction) {
|
||||
search->rom_no[rom_byte_number] |= rom_byte_mask;
|
||||
} else {
|
||||
search->rom_no[rom_byte_number] &= ~rom_byte_mask;
|
||||
}
|
||||
|
||||
// serial number search direction write bit
|
||||
_onewire_write_bit(pin, search_direction);
|
||||
|
||||
// increment the byte counter id_bit_number
|
||||
// and shift the mask rom_byte_mask
|
||||
id_bit_number++;
|
||||
rom_byte_mask <<= 1;
|
||||
|
||||
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
|
||||
if (rom_byte_mask == 0) {
|
||||
rom_byte_number++;
|
||||
rom_byte_mask = 1;
|
||||
}
|
||||
}
|
||||
} while (rom_byte_number < 8); // loop until through all ROM bytes 0-7
|
||||
|
||||
// if the search was successful then
|
||||
if (!(id_bit_number < 65)) {
|
||||
// search successful so set last_discrepancy,last_device_found,search_result
|
||||
search->last_discrepancy = last_zero;
|
||||
|
||||
// check for last device
|
||||
if (search->last_discrepancy == 0) {
|
||||
search->last_device_found = true;
|
||||
}
|
||||
|
||||
search_result = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// if no device found then reset counters so next 'search' will be like a first
|
||||
if (!search_result || !search->rom_no[0]) {
|
||||
search->last_discrepancy = 0;
|
||||
search->last_device_found = false;
|
||||
return ONEWIRE_NONE;
|
||||
} else {
|
||||
addr = 0;
|
||||
for (rom_byte_number = 7; rom_byte_number >= 0; rom_byte_number--) {
|
||||
addr = (addr << 8) | search->rom_no[rom_byte_number];
|
||||
}
|
||||
//printf("Ok I found something at %08x%08x...\n", (uint32_t)(addr >> 32), (uint32_t)addr);
|
||||
}
|
||||
return addr;
|
||||
}
|
||||
|
||||
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
|
||||
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
|
||||
//
|
||||
|
||||
#if ONEWIRE_CRC8_TABLE
|
||||
// This table comes from Dallas sample code where it is freely reusable,
|
||||
// though Copyright (C) 2000 Dallas Semiconductor Corporation
|
||||
static const uint8_t dscrc_table[] = {
|
||||
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
|
||||
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
|
||||
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
|
||||
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
|
||||
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
|
||||
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
|
||||
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
|
||||
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
|
||||
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
|
||||
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
|
||||
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
|
||||
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
|
||||
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
|
||||
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
|
||||
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
|
||||
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
|
||||
|
||||
#ifndef pgm_read_byte
|
||||
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
|
||||
#endif
|
||||
|
||||
//
|
||||
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
|
||||
// and the registers. (note: this might better be done without to
|
||||
// table, it would probably be smaller and certainly fast enough
|
||||
// compared to all those delayMicrosecond() calls. But I got
|
||||
// confused, so I use this table from the examples.)
|
||||
//
|
||||
uint8_t onewire_crc8(const uint8_t *data, uint8_t len) {
|
||||
uint8_t crc = 0;
|
||||
|
||||
while (len--) {
|
||||
crc = pgm_read_byte(dscrc_table + (crc ^ *data++));
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#else
|
||||
//
|
||||
// Compute a Dallas Semiconductor 8 bit CRC directly.
|
||||
// this is much slower, but much smaller, than the lookup table.
|
||||
//
|
||||
uint8_t onewire_crc8(const uint8_t *data, uint8_t len) {
|
||||
uint8_t crc = 0;
|
||||
|
||||
while (len--) {
|
||||
uint8_t inbyte = *data++;
|
||||
for (int i = 8; i; i--) {
|
||||
uint8_t mix = (crc ^ inbyte) & 0x01;
|
||||
crc >>= 1;
|
||||
if (mix) crc ^= 0x8C;
|
||||
inbyte >>= 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
uint8_t onewire_init(onewire_bus_handle_t *bus, gpio_num_t bus_pin, gpio_config_t *custom_config)
|
||||
{
|
||||
if (!bus)
|
||||
{
|
||||
ESP_LOGW(TAG_ONEWIRE, "bus is null! (onewire_init)");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
bus->pin = bus_pin;
|
||||
bus->mutex = xSemaphoreCreateMutex();
|
||||
|
||||
// configure GPIO
|
||||
if(!onewire_configure_gpio(bus_pin, custom_config))
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
uint8_t onewire_reset(onewire_bus_handle_t *bus)
|
||||
{
|
||||
uint8_t presence;
|
||||
|
||||
if (xSemaphoreTake(bus->mutex, _BLOCK_TIME))
|
||||
{
|
||||
gpio_set_level(bus->pin, 0); // Send reset pulse
|
||||
ets_delay_us(_ONEWIRE_RESET_WAIT);
|
||||
|
||||
gpio_set_level(bus->pin, 1); // Leave floating
|
||||
ets_delay_us(_ONEWIRE_PRESENCE_WAIT);
|
||||
|
||||
presence = !gpio_get_level(bus->pin);
|
||||
|
||||
xSemaphoreGive(bus->mutex);
|
||||
}
|
||||
else
|
||||
{
|
||||
ESP_LOGE(TAG_ONEWIRE, _SEMFAIL_MSG, "onewire_reset");
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
ets_delay_us(_ONEWIRE_RESET_RECOVERY);
|
||||
|
||||
return presence;
|
||||
}
|
||||
|
||||
void onewire_write_bit(onewire_bus_handle_t *bus, uint8_t bit)
|
||||
{
|
||||
if (xSemaphoreTake(bus->mutex, _BLOCK_TIME))
|
||||
{
|
||||
if (bit)
|
||||
{
|
||||
// Write 1
|
||||
gpio_set_level(bus->pin, 0);
|
||||
ets_delay_us(_ONEWIRE_WRITE1_LOW);
|
||||
|
||||
gpio_set_level(bus->pin, 1);
|
||||
ets_delay_us(_ONEWIRE_WRITE1_WAIT);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Write 0
|
||||
gpio_set_level(bus->pin, 0);
|
||||
ets_delay_us(_ONEWIRE_WRITE0_LOW);
|
||||
|
||||
gpio_set_level(bus->pin, 1);
|
||||
ets_delay_us(_ONEWIRE_WRITE0_WAIT);
|
||||
}
|
||||
|
||||
xSemaphoreGive(bus->mutex);
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Compute the 1-Wire CRC16 and compare it against the received CRC.
|
||||
// Example usage (reading a DS2408):
|
||||
// // Put everything in a buffer so we can compute the CRC easily.
|
||||
// uint8_t buf[13];
|
||||
// buf[0] = 0xF0; // Read PIO Registers
|
||||
// buf[1] = 0x88; // LSB address
|
||||
// buf[2] = 0x00; // MSB address
|
||||
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
|
||||
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
|
||||
// if (!CheckCRC16(buf, 11, &buf[11])) {
|
||||
// // Handle error.
|
||||
// }
|
||||
//
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param inverted_crc - The two CRC16 bytes in the received data.
|
||||
// This should just point into the received data,
|
||||
// *not* at a 16-bit integer.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return 1, iff the CRC matches.
|
||||
bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv) {
|
||||
uint16_t crc = ~onewire_crc16(input, len, crc_iv);
|
||||
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
|
||||
}
|
||||
|
||||
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
|
||||
// the integrity of data received from many 1-Wire devices. Note that the
|
||||
// CRC computed here is *not* what you'll get from the 1-Wire network,
|
||||
// for two reasons:
|
||||
// 1) The CRC is transmitted bitwise inverted.
|
||||
// 2) Depending on the endian-ness of your processor, the binary
|
||||
// representation of the two-byte return value may have a different
|
||||
// byte order than the two bytes you get from 1-Wire.
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return The CRC16, as defined by Dallas Semiconductor.
|
||||
uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv) {
|
||||
uint16_t crc = crc_iv;
|
||||
static const uint8_t oddparity[16] =
|
||||
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
|
||||
|
||||
uint16_t i;
|
||||
for (i = 0; i < len; i++) {
|
||||
// Even though we're just copying a byte from the input,
|
||||
// we'll be doing 16-bit computation with it.
|
||||
uint16_t cdata = input[i];
|
||||
cdata = (cdata ^ crc) & 0xff;
|
||||
crc >>= 8;
|
||||
|
||||
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
|
||||
crc ^= 0xC001;
|
||||
|
||||
cdata <<= 6;
|
||||
crc ^= cdata;
|
||||
cdata <<= 1;
|
||||
crc ^= cdata;
|
||||
else
|
||||
{
|
||||
ESP_LOGE(TAG_ONEWIRE, _SEMFAIL_MSG, "onewire_write_bit");
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
|
||||
uint8_t onewire_read_bit(onewire_bus_handle_t *bus)
|
||||
{
|
||||
uint8_t bit;
|
||||
|
||||
if (xSemaphoreTake(bus->mutex, _BLOCK_TIME))
|
||||
{
|
||||
gpio_set_level(bus->pin, 0);
|
||||
ets_delay_us(_ONEWIRE_WRITE1_LOW);
|
||||
|
||||
gpio_set_level(bus->pin, 1);
|
||||
ets_delay_us(_ONEWIRE_READ_WAIT);
|
||||
|
||||
bit = !gpio_get_level(bus->pin);
|
||||
|
||||
xSemaphoreGive(bus->mutex);
|
||||
|
||||
ets_delay_us(_ONEWIRE_READ_RECOVERY);
|
||||
}
|
||||
else
|
||||
{
|
||||
ESP_LOGE(TAG_ONEWIRE, _SEMFAIL_MSG, "onewire_read_bit");
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
return bit;
|
||||
}
|
||||
|
||||
void onewire_write_byte(onewire_bus_handle_t *bus, uint8_t byte)
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
for (i = 0; i < 8; i++)
|
||||
{
|
||||
onewire_write_bit(bus, (byte >> i) & 0x01);
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t onewire_read_byte(onewire_bus_handle_t *bus)
|
||||
{
|
||||
uint8_t i;
|
||||
uint8_t byte = 0x0;
|
||||
|
||||
for (i = 0; i < 8; i++)
|
||||
{
|
||||
byte |= (!onewire_read_bit(bus) << i);
|
||||
}
|
||||
|
||||
return byte;
|
||||
}
|
||||
|
||||
void onewire_send_command(onewire_bus_handle_t *bus, onewire_rom_commands_t command)
|
||||
{
|
||||
uint8_t payload = 0x0 ^ command;
|
||||
|
||||
onewire_write_byte(bus, payload);
|
||||
}
|
316
embadet/components/onewire/onewire.h
Normal file → Executable file
316
embadet/components/onewire/onewire.h
Normal file → Executable file
|
@ -1,243 +1,121 @@
|
|||
#ifndef __ONEWIRE_H__
|
||||
#define __ONEWIRE_H__
|
||||
#ifndef ONEWIRE_H
|
||||
#define ONEWIRE_H
|
||||
|
||||
#include <espressif/esp_misc.h> // sdk_os_delay_us
|
||||
#include "FreeRTOS.h"
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "driver/gpio.h"
|
||||
#include "esp_types.h"
|
||||
#include "esp_err.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#define _ONEWIRE_WRITE1_LOW 6
|
||||
#define _ONEWIRE_WRITE1_WAIT 64
|
||||
#define _ONEWIRE_WRITE0_LOW 60
|
||||
#define _ONEWIRE_WRITE0_WAIT 10
|
||||
#define _ONEWIRE_READ_WAIT 9
|
||||
#define _ONEWIRE_READ_RECOVERY 55
|
||||
#define _ONEWIRE_RESET_WAIT 480
|
||||
#define _ONEWIRE_PRESENCE_WAIT 70
|
||||
#define _ONEWIRE_RESET_RECOVERY 410
|
||||
|
||||
/** @file onewire.h
|
||||
*
|
||||
* Routines to access devices using the Dallas Semiconductor 1-Wire(tm)
|
||||
* protocol.
|
||||
*/
|
||||
#define _BLOCK_TIME pdMS_TO_TICKS(1000)
|
||||
#define _SEMFAIL_MSG "Failed to obtain semaphore. (%s)"
|
||||
|
||||
/** Select the table-lookup method of computing the 8-bit CRC
|
||||
* by setting this to 1 during compilation. The lookup table enlarges code
|
||||
* size by about 250 bytes. By default, a slower but very compact algorithm
|
||||
* is used.
|
||||
*/
|
||||
#ifndef ONEWIRE_CRC8_TABLE
|
||||
#define ONEWIRE_CRC8_TABLE 0
|
||||
#endif
|
||||
static const char *TAG_ONEWIRE = "ONEWIRE";
|
||||
|
||||
/** Type used to hold all 1-Wire device ROM addresses (64-bit) */
|
||||
typedef uint64_t onewire_addr_t;
|
||||
typedef enum {
|
||||
_ROM_READ = 0x33,
|
||||
_ROM_SEARCH = 0xF0,
|
||||
_ROM_MATCH = 0x55,
|
||||
_ROM_SKIP = 0xCC
|
||||
} onewire_rom_commands_t;
|
||||
|
||||
/** Structure to contain the current state for onewire_search_next(), etc */
|
||||
typedef struct {
|
||||
uint8_t rom_no[8];
|
||||
uint8_t last_discrepancy;
|
||||
bool last_device_found;
|
||||
} onewire_search_t;
|
||||
gpio_num_t pin;
|
||||
SemaphoreHandle_t mutex;
|
||||
} onewire_bus_handle_t;
|
||||
|
||||
/** ::ONEWIRE_NONE is an invalid ROM address that will never occur in a device
|
||||
* (CRC mismatch), and so can be useful as an indicator for "no-such-device",
|
||||
* etc.
|
||||
/**
|
||||
* @brief Configure gpio pins for onewire communication
|
||||
*
|
||||
* Set `custom_config` to NULL for default config.
|
||||
*
|
||||
* @param pin Bus pin
|
||||
* @param custom_config Custom gpio config
|
||||
*
|
||||
* @retval 1: Success
|
||||
* @retval 0: Incorrect pin or gpio configuration failed (Logs tells which happened)
|
||||
*/
|
||||
#define ONEWIRE_NONE ((onewire_addr_t)(0xffffffffffffffffLL))
|
||||
uint8_t onewire_configure_gpio(gpio_num_t pin, gpio_config_t *custom_config);
|
||||
|
||||
/** Perform a 1-Wire reset cycle.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
*
|
||||
* @returns `true` if at least one device responds with a presence pulse,
|
||||
* `false` if no devices were detected (or the bus is shorted, etc)
|
||||
/**
|
||||
* @brief Initalize onewire bus
|
||||
*
|
||||
* Set `custom_config` to NULL for default config.
|
||||
* @warning MUST be called before any other library function!
|
||||
*
|
||||
* @param bus Bus handle
|
||||
* @param pin Bus pin
|
||||
* @param custom_config Custom gpio config
|
||||
*
|
||||
* @retval 1: Success
|
||||
* @retval 0: `bus` is NULL or gpio configuration failed (Logs tells which happened)
|
||||
*/
|
||||
bool onewire_reset(int pin);
|
||||
uint8_t onewire_init(onewire_bus_handle_t *bus, gpio_num_t bus_pin, gpio_config_t *custom_config);
|
||||
|
||||
/** Issue a 1-Wire rom select command to select a particular device.
|
||||
*
|
||||
* It is necessary to call onewire_reset() before calling this function.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
* @param addr The ROM address of the device to select
|
||||
*
|
||||
* @returns `true` if the "ROM select" command could be succesfully issued,
|
||||
* `false` if there was an error.
|
||||
/**
|
||||
* @brief Send reset pulse
|
||||
*
|
||||
* @param bus Bus handle
|
||||
*
|
||||
* @retval 1: Success (device sent presence pulse)
|
||||
* @retval -1: Failed to obtain semaphore for gpio handling
|
||||
* @retval 0: Device failed to return presence pulse
|
||||
*/
|
||||
bool onewire_select(int pin, const onewire_addr_t addr);
|
||||
uint8_t onewire_reset(onewire_bus_handle_t *bus);
|
||||
|
||||
/** Issue a 1-Wire "skip ROM" command to select *all* devices on the bus.
|
||||
*
|
||||
* It is necessary to call onewire_reset() before calling this function.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
*
|
||||
* @returns `true` if the "skip ROM" command could be succesfully issued,
|
||||
* `false` if there was an error.
|
||||
/**
|
||||
* @brief Write bit
|
||||
*
|
||||
* @param bus Bus handle
|
||||
* @param bit Bit to send
|
||||
*/
|
||||
bool onewire_skip_rom(int pin);
|
||||
void onewire_write_bit(onewire_bus_handle_t *bus, uint8_t bit);
|
||||
|
||||
/** Write a byte on the onewire bus.
|
||||
*
|
||||
* The writing code uses open-drain mode and expects the pullup resistor to
|
||||
* pull the line high when not driven low. If you need strong power after the
|
||||
* write (e.g. DS18B20 in parasite power mode) then call onewire_power() after
|
||||
* this is complete to actively drive the line high.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
* @param v The byte value to write
|
||||
*
|
||||
* @returns `true` if successful, `false` on error.
|
||||
/**
|
||||
* @brief Write byte
|
||||
*
|
||||
* @param bus Bus handle
|
||||
* @param bit Byte to send
|
||||
*/
|
||||
bool onewire_write(int pin, uint8_t v);
|
||||
void onewire_write_byte(onewire_bus_handle_t *bus, uint8_t byte);
|
||||
|
||||
/** Write multiple bytes on the 1-Wire bus.
|
||||
*
|
||||
* See onewire_write() for more info.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
* @param buf A pointer to the buffer of bytes to be written
|
||||
* @param count Number of bytes to write
|
||||
*
|
||||
* @returns `true` if all bytes written successfully, `false` on error.
|
||||
/**
|
||||
* @brief Read bit
|
||||
*
|
||||
* @param bus Bus handle
|
||||
*
|
||||
* @retval 1: Device returned 1
|
||||
* @retval 0: Device returned 0
|
||||
* @retval -1: Failed to obtain semaphore for gpio handling
|
||||
*/
|
||||
bool onewire_write_bytes(int pin, const uint8_t *buf, size_t count);
|
||||
uint8_t onewire_read_bit(onewire_bus_handle_t *bus);
|
||||
|
||||
/** Read a byte from a 1-Wire device.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
*
|
||||
* @returns the read byte on success, negative value on error.
|
||||
/**
|
||||
* @brief Read bit
|
||||
*
|
||||
* @param bus Bus handle
|
||||
*
|
||||
* @return Byte returned by device
|
||||
*/
|
||||
int onewire_read(int pin);
|
||||
uint8_t onewire_read_byte(onewire_bus_handle_t *bus);
|
||||
|
||||
/** Read multiple bytes from a 1-Wire device.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
* @param buf A pointer to the buffer to contain the read bytes
|
||||
* @param count Number of bytes to read
|
||||
*
|
||||
* @returns `true` on success, `false` on error.
|
||||
/**
|
||||
* @brief Send command to device
|
||||
*
|
||||
* @param bus Bus handle
|
||||
* @param command Onewire rom command
|
||||
*
|
||||
*/
|
||||
bool onewire_read_bytes(int pin, uint8_t *buf, size_t count);
|
||||
void onewire_send_command(onewire_bus_handle_t *bus, onewire_rom_commands_t command);
|
||||
|
||||
/** Actively drive the bus high to provide extra power for certain operations
|
||||
* of parasitically-powered devices.
|
||||
*
|
||||
* For parasitically-powered devices which need more power than can be
|
||||
* provided via the normal pull-up resistor, it may be necessary for some
|
||||
* operations to drive the bus actively high. This function can be used to
|
||||
* perform that operation.
|
||||
*
|
||||
* The bus can be depowered once it is no longer needed by calling
|
||||
* onewire_depower(), or it will be depowered automatically the next time
|
||||
* onewire_reset() is called to start another command.
|
||||
*
|
||||
* Note: Make sure the device(s) you are powering will not pull more current
|
||||
* than the ESP8266 is able to supply via its GPIO pins (this is especially
|
||||
* important when multiple devices are on the same bus and they are all
|
||||
* performing a power-intensive operation at the same time (i.e. multiple
|
||||
* DS18B20 sensors, which have all been given a "convert T" operation by using
|
||||
* onewire_skip_rom())).
|
||||
*
|
||||
* Note: This routine will check to make sure that the bus is already high
|
||||
* before driving it, to make sure it doesn't attempt to drive it high while
|
||||
* something else is pulling it low (which could cause a reset or damage the
|
||||
* ESP8266).
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
*
|
||||
* @returns `true` on success, `false` on error.
|
||||
*/
|
||||
bool onewire_power(int pin);
|
||||
|
||||
/** Stop forcing power onto the bus.
|
||||
*
|
||||
* You only need to do this if you previously called onewire_power() to drive
|
||||
* the bus high and now want to allow it to float instead. Note that
|
||||
* onewire_reset() will also automatically depower the bus first, so you do
|
||||
* not need to call this first if you just want to start a new operation.
|
||||
*
|
||||
* @param pin The GPIO pin connected to the 1-Wire bus.
|
||||
*/
|
||||
void onewire_depower(int pin);
|
||||
|
||||
/** Clear the search state so that it will start from the beginning on the next
|
||||
* call to onewire_search_next().
|
||||
*
|
||||
* @param search The onewire_search_t structure to reset.
|
||||
*/
|
||||
void onewire_search_start(onewire_search_t *search);
|
||||
|
||||
/** Setup the search to search for devices with the specified "family code".
|
||||
*
|
||||
* @param search The onewire_search_t structure to update.
|
||||
* @param family_code The "family code" to search for.
|
||||
*/
|
||||
void onewire_search_prefix(onewire_search_t *search, uint8_t family_code);
|
||||
|
||||
/** Search for the next device on the bus.
|
||||
*
|
||||
* The order of returned device addresses is deterministic. You will always
|
||||
* get the same devices in the same order.
|
||||
*
|
||||
* @returns the address of the next device on the bus, or ::ONEWIRE_NONE if
|
||||
* there is no next address. ::ONEWIRE_NONE might also mean that the bus is
|
||||
* shorted, there are no devices, or you have already retrieved all of them.
|
||||
*
|
||||
* It might be a good idea to check the CRC to make sure you didn't get
|
||||
* garbage.
|
||||
*/
|
||||
onewire_addr_t onewire_search_next(onewire_search_t *search, int pin);
|
||||
|
||||
/** Compute a Dallas Semiconductor 8 bit CRC.
|
||||
*
|
||||
* These are used in the ROM address and scratchpad registers to verify the
|
||||
* transmitted data is correct.
|
||||
*/
|
||||
uint8_t onewire_crc8(const uint8_t *data, uint8_t len);
|
||||
|
||||
/** Compute the 1-Wire CRC16 and compare it against the received CRC.
|
||||
*
|
||||
* Example usage (reading a DS2408):
|
||||
* @code
|
||||
* // Put everything in a buffer so we can compute the CRC easily.
|
||||
* uint8_t buf[13];
|
||||
* buf[0] = 0xF0; // Read PIO Registers
|
||||
* buf[1] = 0x88; // LSB address
|
||||
* buf[2] = 0x00; // MSB address
|
||||
* onewire_write_bytes(pin, buf, 3); // Write 3 cmd bytes
|
||||
* onewire_read_bytes(pin, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
|
||||
* if (!onewire_check_crc16(buf, 11, &buf[11])) {
|
||||
* // TODO: Handle error.
|
||||
* }
|
||||
* @endcode
|
||||
*
|
||||
* @param input Array of bytes to checksum.
|
||||
* @param len Number of bytes in `input`
|
||||
* @param inverted_crc The two CRC16 bytes in the received data.
|
||||
* This should just point into the received data,
|
||||
* *not* at a 16-bit integer.
|
||||
* @param crc_iv The crc starting value (optional)
|
||||
*
|
||||
* @returns `true` if the CRC matches, `false` otherwise.
|
||||
*/
|
||||
bool onewire_check_crc16(const uint8_t* input, size_t len, const uint8_t* inverted_crc, uint16_t crc_iv);
|
||||
|
||||
/** Compute a Dallas Semiconductor 16 bit CRC.
|
||||
*
|
||||
* This is required to check the integrity of data received from many 1-Wire
|
||||
* devices. Note that the CRC computed here is *not* what you'll get from the
|
||||
* 1-Wire network, for two reasons:
|
||||
* 1. The CRC is transmitted bitwise inverted.
|
||||
* 2. Depending on the endian-ness of your processor, the binary
|
||||
* representation of the two-byte return value may have a different
|
||||
* byte order than the two bytes you get from 1-Wire.
|
||||
*
|
||||
* @param input Array of bytes to checksum.
|
||||
* @param len How many bytes are in `input`.
|
||||
* @param crc_iv The crc starting value (optional)
|
||||
*
|
||||
* @returns the CRC16, as defined by Dallas Semiconductor.
|
||||
*/
|
||||
uint16_t onewire_crc16(const uint8_t* input, size_t len, uint16_t crc_iv);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __ONEWIRE_H__ */
|
||||
#endif
|
|
@ -1,45 +1,45 @@
|
|||
|
||||
#include "esp_log.h"
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
#include <onewire.h>
|
||||
#include <ds18b20.h> // Die Header-Datei mit DS18B20-Funktionen
|
||||
#include <task.h>
|
||||
|
||||
#define GPIO_PIN 4 // GPIO Pin, an den der DS18B20 angeschlossen ist
|
||||
#define INTERVAL 100 // Intervall in Sekunden
|
||||
int app_main() {
|
||||
// Create variable for handler
|
||||
ds18b20_handler_t sensor;
|
||||
|
||||
void delay(int seconds) {
|
||||
time_t start_time = time(NULL);
|
||||
while (time(NULL) - start_time < seconds);
|
||||
}
|
||||
// Check for any initialization failures
|
||||
if (!ds18b20_init(&sensor, GPIO_NUM_2, TEMP_RES_12_BIT))
|
||||
{
|
||||
ESP_LOGE("TAG", "Failed to initalize DS18B20!");
|
||||
|
||||
int main() {
|
||||
ds18b20_addr_t sensor_address;
|
||||
return 0; // Exit
|
||||
}
|
||||
|
||||
// Sensoren auf dem Bus scannen (angenommen, dass nur ein Sensor angeschlossen ist)
|
||||
int sensor_count = ds18b20_scan_devices(GPIO_PIN, &sensor_address, 1);
|
||||
if (sensor_count <= 0) {
|
||||
printf("Kein DS18B20-Sensor gefunden!\n");
|
||||
return -1;
|
||||
}
|
||||
float temp = 0;
|
||||
|
||||
while (1) {
|
||||
// Temperaturmessung starten
|
||||
bool success = ds18b20_measure(GPIO_PIN, sensor_address, true);
|
||||
if (!success) {
|
||||
printf("Fehler bei der Temperaturmessung\n");
|
||||
} else {
|
||||
// Temperaturwert lesen
|
||||
float temperature = ds18b20_read_temperature(GPIO_PIN, sensor_address);
|
||||
if (temperature != temperature) { // NaN-Check
|
||||
printf("Fehler beim Lesen der Temperatur\n");
|
||||
} else {
|
||||
printf("Aktuelle Temperatur: %.2f°C\n", temperature);
|
||||
}
|
||||
}
|
||||
|
||||
// Wartezeit von 100 Sekunden
|
||||
delay(INTERVAL);
|
||||
}
|
||||
|
||||
// If you doesn't convert temperature you may read 85.0 Celsius,
|
||||
// as it is default temperature set by DS18B20 if convert command wasn't issued.
|
||||
|
||||
// Read temperature
|
||||
printf("hit");
|
||||
for(int i = 0; i < 30; ++i) {
|
||||
// Initalize conversion
|
||||
ds18b20_convert_temp(&sensor);
|
||||
temp = ds18b20_read_temp(&sensor);
|
||||
vTaskDelay(5000 / portTICK_PERIOD_MS);
|
||||
printf("\n");
|
||||
printf( "Temperature = %.4f", temp);
|
||||
};
|
||||
|
||||
// Print temperature with 4 decimal places
|
||||
// (12 bit resolution measurement accuracy is 0.0625 Celsius)
|
||||
ESP_LOGI("TAG", "Temperature = %.4f", temp);
|
||||
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue