BoskoopBase/embadet/components/ds18b20/ds18b20.c
2024-10-11 14:21:57 +02:00

244 lines
6.6 KiB
C

#include "FreeRTOS.h"
#include "task.h"
#include "math.h"
#include "ds18b20.h"
#define DS18B20_WRITE_SCRATCHPAD 0x4E
#define DS18B20_READ_SCRATCHPAD 0xBE
#define DS18B20_COPY_SCRATCHPAD 0x48
#define DS18B20_READ_EEPROM 0xB8
#define DS18B20_READ_PWRSUPPLY 0xB4
#define DS18B20_SEARCHROM 0xF0
#define DS18B20_SKIP_ROM 0xCC
#define DS18B20_READROM 0x33
#define DS18B20_MATCHROM 0x55
#define DS18B20_ALARMSEARCH 0xEC
#define DS18B20_CONVERT_T 0x44
#define os_sleep_ms(x) vTaskDelay(((x) + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS)
#define DS18B20_FAMILY_ID 0x28
#define DS18S20_FAMILY_ID 0x10
#ifdef DS18B20_DEBUG
#define debug(fmt, ...) printf("%s" fmt "\n", "DS18B20: ", ## __VA_ARGS__);
#else
#define debug(fmt, ...)
#endif
uint8_t ds18b20_read_all(uint8_t pin, ds_sensor_t *result) {
onewire_addr_t addr;
onewire_search_t search;
uint8_t sensor_id = 0;
onewire_search_start(&search);
while ((addr = onewire_search_next(&search, pin)) != ONEWIRE_NONE) {
uint8_t crc = onewire_crc8((uint8_t *)&addr, 7);
if (crc != (addr >> 56)){
debug("CRC check failed: %02X %02X\n", (unsigned)(addr >> 56), crc);
return 0;
}
onewire_reset(pin);
onewire_select(pin, addr);
onewire_write(pin, DS18B20_CONVERT_T);
onewire_power(pin);
vTaskDelay(750 / portTICK_PERIOD_MS);
onewire_reset(pin);
onewire_select(pin, addr);
onewire_write(pin, DS18B20_READ_SCRATCHPAD);
uint8_t get[10];
for (int k=0;k<9;k++){
get[k]=onewire_read(pin);
}
//debug("\n ScratchPAD DATA = %X %X %X %X %X %X %X %X %X\n",get[8],get[7],get[6],get[5],get[4],get[3],get[2],get[1],get[0]);
crc = onewire_crc8(get, 8);
if (crc != get[8]){
debug("CRC check failed: %02X %02X\n", get[8], crc);
return 0;
}
uint8_t temp_msb = get[1]; // Sign byte + lsbit
uint8_t temp_lsb = get[0]; // Temp data plus lsb
uint16_t temp = temp_msb << 8 | temp_lsb;
float temperature;
temperature = (temp * 625.0)/10000;
//debug("Got a DS18B20 Reading: %d.%02d\n", (int)temperature, (int)(temperature - (int)temperature) * 100);
result[sensor_id].id = sensor_id;
result[sensor_id].value = temperature;
sensor_id++;
}
return sensor_id;
}
float ds18b20_read_single(uint8_t pin) {
onewire_reset(pin);
onewire_skip_rom(pin);
onewire_write(pin, DS18B20_CONVERT_T);
onewire_power(pin);
vTaskDelay(750 / portTICK_PERIOD_MS);
onewire_reset(pin);
onewire_skip_rom(pin);
onewire_write(pin, DS18B20_READ_SCRATCHPAD);
uint8_t get[10];
for (int k=0;k<9;k++){
get[k]=onewire_read(pin);
}
//debug("\n ScratchPAD DATA = %X %X %X %X %X %X %X %X %X\n",get[8],get[7],get[6],get[5],get[4],get[3],get[2],get[1],get[0]);
uint8_t crc = onewire_crc8(get, 8);
if (crc != get[8]){
debug("CRC check failed: %02X %02X", get[8], crc);
return 0;
}
uint8_t temp_msb = get[1]; // Sign byte + lsbit
uint8_t temp_lsb = get[0]; // Temp data plus lsb
uint16_t temp = temp_msb << 8 | temp_lsb;
float temperature;
temperature = (temp * 625.0)/10000;
return temperature;
//debug("Got a DS18B20 Reading: %d.%02d\n", (int)temperature, (int)(temperature - (int)temperature) * 100);
}
bool ds18b20_measure(int pin, ds18b20_addr_t addr, bool wait) {
if (!onewire_reset(pin)) {
return false;
}
if (addr == DS18B20_ANY) {
onewire_skip_rom(pin);
} else {
onewire_select(pin, addr);
}
taskENTER_CRITICAL();
onewire_write(pin, DS18B20_CONVERT_T);
// For parasitic devices, power must be applied within 10us after issuing
// the convert command.
onewire_power(pin);
taskEXIT_CRITICAL();
if (wait) {
os_sleep_ms(750);
onewire_depower(pin);
}
return true;
}
bool ds18b20_read_scratchpad(int pin, ds18b20_addr_t addr, uint8_t *buffer) {
uint8_t crc;
uint8_t expected_crc;
if (!onewire_reset(pin)) {
return false;
}
if (addr == DS18B20_ANY) {
onewire_skip_rom(pin);
} else {
onewire_select(pin, addr);
}
onewire_write(pin, DS18B20_READ_SCRATCHPAD);
for (int i = 0; i < 8; i++) {
buffer[i] = onewire_read(pin);
}
crc = onewire_read(pin);
expected_crc = onewire_crc8(buffer, 8);
if (crc != expected_crc) {
debug("CRC check failed reading scratchpad: %02x %02x %02x %02x %02x %02x %02x %02x : %02x (expected %02x)\n", buffer[0], buffer[1], buffer[2], buffer[3], buffer[4], buffer[5], buffer[6], buffer[7], crc, expected_crc);
return false;
}
return true;
}
float ds18b20_read_temperature(int pin, ds18b20_addr_t addr) {
uint8_t scratchpad[8];
int16_t temp;
if (!ds18b20_read_scratchpad(pin, addr, scratchpad)) {
return NAN;
}
temp = scratchpad[1] << 8 | scratchpad[0];
float res;
if ((uint8_t)addr == DS18B20_FAMILY_ID) {
res = ((float)temp * 625.0)/10000;
}
else {
temp = ((temp & 0xfffe) << 3) + (16 - scratchpad[6]) - 4;
res = ((float)temp * 625.0)/10000 - 0.25;
}
return res;
}
float ds18b20_measure_and_read(int pin, ds18b20_addr_t addr) {
if (!ds18b20_measure(pin, addr, true)) {
return NAN;
}
return ds18b20_read_temperature(pin, addr);
}
bool ds18b20_measure_and_read_multi(int pin, ds18b20_addr_t *addr_list, int addr_count, float *result_list) {
if (!ds18b20_measure(pin, DS18B20_ANY, true)) {
for (int i=0; i < addr_count; i++) {
result_list[i] = NAN;
}
return false;
}
return ds18b20_read_temp_multi(pin, addr_list, addr_count, result_list);
}
int ds18b20_scan_devices(int pin, ds18b20_addr_t *addr_list, int addr_count) {
onewire_search_t search;
onewire_addr_t addr;
int found = 0;
onewire_search_start(&search);
while ((addr = onewire_search_next(&search, pin)) != ONEWIRE_NONE) {
uint8_t family_id = (uint8_t)addr;
if (family_id == DS18B20_FAMILY_ID || family_id == DS18S20_FAMILY_ID) {
if (found < addr_count) {
addr_list[found] = addr;
}
found++;
}
}
return found;
}
bool ds18b20_read_temp_multi(int pin, ds18b20_addr_t *addr_list, int addr_count, float *result_list) {
bool result = true;
for (int i = 0; i < addr_count; i++) {
result_list[i] = ds18b20_read_temperature(pin, addr_list[i]);
if (isnan(result_list[i])) {
result = false;
}
}
return result;
}